metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[diaquabis(μ^2 -azido- $\kappa^2 N^1$: N^1)bis(μ_3 -1-oxoisonicotinato- $\kappa^3 O$:O':O'')dicadmium(II)]

Zhi-Xiang Wang,^a* Xiu-Bing Li^b and Bai-Wang Sun^a

^aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and ^bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: chmsunbw@seu.edu.cn

Received 2 March 2008; accepted 5 May 2008

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.006 Å; R factor = 0.033; wR factor = 0.088; data-to-parameter ratio = 11.3.

In the title compound, $[Cd_2(C_6H_4NO_3)_2(N_3)_2(H_2O)_2]_n$, one Cd^{II} atom is located on an inversion center and is coordinated by four O atoms from four bridging 1-oxoisonicotinate ligands and two N atoms of two bridging azide ligands in a slightly distorted octahedral geometry. The other Cd^{II} atom, also lying on an inversion center, is coordinated by four O atoms from two bridging 1-oxoisonicotinate ligands and two water molecules and two N atoms of two bridging azide ligands in a slightly distorted octahedral geometry. The Cd atoms are connected *via* the 1-oxoisonicotinate and azide ligands into a two-dimensional coordination network. The crystal structure involves $O-H \cdots N$ and $O-H \cdots O$ hydrogen bonds.

Related literature

For general background, see: Du *et al.* (2006); Dybtsev *et al.* (2004). For related structures, see: Bai *et al.* (2004); He *et al.* (2005); Zhao *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Cd_2(C_6H_4NO_3)_2(N_3)_2(H_2O)_2 \end{bmatrix}$ $M_r = 621.10$ Triclinic, $P\overline{1}$ a = 6.5409 (17) Å b = 7.850 (2) Å c = 9.410 (3) Å $\alpha = 99.668$ (6)° $\beta = 97.164$ (6)°

Data collection

Rigaku Scxmini 1K CCD areadetector diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.612, T_{\rm max} = 0.613$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.087$ S = 1.081567 reflections 139 parameters 5082 measured reflections 1567 independent reflections 1438 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

 $\gamma = 107.566 \ (5)^{\circ}$

V = 446.1 (2) Å³

Mo $K\alpha$ radiation

 $0.3 \times 0.2 \times 0.2$ mm

 $\mu = 2.45 \text{ mm}^{-1}$

T = 223 (2) K

Z = 1

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.60 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -1.02 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1Selected geometric parameters (Å, °).

Cd1-N1	2.259 (3)	Cd2-O2	2.242 (3)
Cd1-O1	2.289 (3)	Cd2-N1 ⁱⁱ	2.284 (3)
Cd1-O3 ⁱ	2.370 (3)	Cd2-O4	2.363 (3)
N1-Cd1-O1	85.90 (12)	O2-Cd2-N1 ⁱⁱ	85.06 (12)
N1 ⁱⁱⁱ -Cd1-O1	94.10 (12)	$O2-Cd2-O4^{v}$	87.87 (12)
N1-Cd1-O3 ⁱ	90.18 (12)	$O2^{v}-Cd2-O4^{v}$	92.13 (12)
$O1-Cd1-O3^{i}$	89.01 (11)	N1 ⁱⁱ -Cd2-O4 ^v	94.08 (12)
$N1-Cd1-O3^{iv}$	89.82 (12)	N1 ⁱⁱⁱ -Cd2-O4 ^v	85.92 (12)

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) x, y - 1, z; (iii) -x, -y + 1, -z + 1; (iv) x, y, z - 1; (v) -x, -y, -z + 1.

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O4−H4C···N3 ^{vi}	0.90	2.36	3.239 (7)	167
$O4-H4B\cdots O3^{vii}$	0.83	2.05	2.716 (4)	137

Symmetry codes: (vi) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006) and *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2123).

References

- Bai, L.-X., Han, W., Wang, W.-Z., Liu, X., Yan, S.-P. & Liao, D.-Z. (2004). Acta Cryst. E60, m953–m954.
- Du, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785– 5792.
- Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33.
- He, Z., Gao, E. Q., Wang, Z. M., Yan, C. H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862–874.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, Y.-H., Xu, H.-B., Shao, K.-Z., Xing, Y., Su, Z.-M. & Ma, J.-F. (2007). *Cryst. Growth Des.* 7, 513–520.

supplementary materials

Acta Cryst. (2008). E64, m792-m793 [doi:10.1107/S1600536808013196]

Poly[diaquabis(μ^2 -azido- $\kappa^2 N^1$: N^1)bis(μ_3 -1-oxoisonicotinato- $\kappa^3 O$:O':O'')dicadmium(II)]

Z.-X. Wang, X.-B. Li and B.-W. Sun

Comment

There is currently considerable interest in the synthesis and characterization of metal–organic frameworks because of their potential applications in molecular adsorption and separation processes, gas storage, ion exchange, catalysis, sensor technology and electronics (Du *et al.*, 2006; Dybtsev *et al.*, 2004). The isonicotinic acid N-oxide ligand possesses a longer bridging spacer and richer coordination modes to form a fascinating structure (He *et al.*, 2005; Zhao *et al.*, 2007). It is well known that azide anion is an excellent bridging ligand (Bai *et al.*, 2004). Therefore, we expect to obtain higher dimensional structures based on isonicotinic acid N-oxide and azide ligands and transition metal ions through the control of their molar ratios. We report here the synthesis and crystal structure of the title compound.

In the title compound, the Cd1 atom is located on an inversion center and is coordinated by four O atoms from four bridging isonicotinate-N-oxide ligands and two N atoms of two bridging azide ligands in a slightly distorted octahedral geometry. The Cd2 atom, also lying on an inversion center, is coordinated by four O atoms from two bridging isonicotinate-N-oxide ligands and two water molecules and two N atoms of two azide ligands in a slightly distorted octahedral geometry (Fig. 1; Table 1). The Cd atoms are connected *via* the isonicotinate-N-oxide and azide ligands into a two-dimensional coordination network. Furthermore, a three-dimensional supramolecular network is formed by the intermolecular O—H…N and O—H…O hydrogen bonds (Fig. 2; Table 2).

Experimental

All reagents and solvents were used as obtained without further purification. $Cd(NO_3)_2.4H_2O$ (0.062 g, 0.2 mmol), isonicotinic acid N-oxide (0.028 g, 0.2 mmol), NaN₃ (0.013 g, 0.2 mmol) and NaOH (0.016 g, 0.4 mmol) were dissolved in distilled water (10 ml). The mixture was sealed in a Teflon-lined stainless steel vessel and held at 443 K for one week. The vessel was gradually cooled to room temperature and colorless crystals suitable for crystallographic analysis were obtained.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the water molecule were located in a difference Fourier map and fixed in the refinements with $U_{iso}(H) = 1.2U_{eq}(O)$. **Figures**

Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination units. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, 1 - z; (iii) -x, 1 - y, 2 - z; (iv) x, y, -1 + z; (v) x, 1 + y, z; (vi) x, -1 + y, z.]

Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Poly[diaquabis(μ_2 -azido- $\kappa^2 N^1$: N^1)bis(μ_3 -1- oxoisonicotinato- $\kappa^3 O$:O':O'')dicadmium(II)]

$[Cd_2(C_6H_4NO_3)_2(N_3)_2(H_2O)_2]$	Z = 1
$M_r = 621.10$	F(000) = 300
Triclinic, <i>P</i> T	$D_{\rm x} = 2.312 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 6.5409 (17) Å	Cell parameters from 2159 reflections
b = 7.850 (2) Å	$\theta = 3.1 - 26.8^{\circ}$
c = 9.410 (3) Å	$\mu = 2.45 \text{ mm}^{-1}$
$\alpha = 99.668 \ (6)^{\circ}$	T = 223 K
$\beta = 97.164 \ (6)^{\circ}$	Block, colorless
$\gamma = 107.566 \ (5)^{\circ}$	$0.3\times0.2\times0.2~mm$
$V = 446.1 (2) \text{ Å}^3$	

Data collection

Rigaku Scxmini 1K CCD area-detector diffractometer	1567 independent reflections
Radiation source: fine-focus sealed tube graphite	1438 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
thin–slice ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -9 \rightarrow 7$
$T_{\min} = 0.612, \ T_{\max} = 0.613$	$l = -11 \rightarrow 10$
5082 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.087$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 1.3747P]$ where $P = (F_o^2 + 2F_c^2)/3$
1567 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
139 parameters	$\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{min} = -1.02 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.0000	0.5000	0.5000	0.01556 (17)
Cd2	0.0000	0.0000	0.5000	0.01683 (17)
01	0.1884 (5)	0.4600 (4)	0.7066 (3)	0.0244 (7)
O2	0.0598 (6)	0.1674 (4)	0.7283 (3)	0.0311 (8)
03	0.3130 (5)	0.5495 (5)	1.3892 (3)	0.0270 (7)
O4	0.3676 (5)	0.1301 (5)	0.4778 (4)	0.0295 (8)
H4B	0.4361	0.2055	0.5546	0.035*
H4C	0.4127	0.0951	0.3945	0.035*
N1	0.1164 (6)	0.7997 (5)	0.6110 (4)	0.0201 (8)
N2	0.2664 (6)	0.8640 (5)	0.7131 (4)	0.0227 (8)
N3	0.4108 (8)	0.9283 (6)	0.8078 (6)	0.0506 (14)
N4	0.2847 (6)	0.5005 (5)	1.2437 (4)	0.0208 (8)
C1	0.3105 (6)	0.6288 (6)	1.1625 (5)	0.0213 (9)
H1A	0.3534	0.7529	1.2095	0.026*
C2	0.2752 (6)	0.5808 (6)	1.0126 (5)	0.0171 (8)
H2A	0.2954	0.6714	0.9569	0.021*
C3	0.2086 (6)	0.3959 (6)	0.9430 (4)	0.0168 (8)
C4	0.1925 (7)	0.2671 (6)	1.0312 (5)	0.0216 (9)
H4A	0.1547	0.1423	0.9873	0.026*
C5	0.2314 (7)	0.3216 (6)	1.1804 (5)	0.0240 (9)
H5A	0.2211	0.2345	1.2391	0.029*
C6	0.1483 (7)	0.3368 (6)	0.7782 (5)	0.0189 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$)
--	---

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.0215 (3)	0.0136 (2)	0.0112 (2)	0.00553 (18)	0.00313 (17)	0.00218 (17)
Cd2	0.0216 (3)	0.0152 (3)	0.0132 (3)	0.00717 (18)	0.00221 (17)	0.00086 (17)
01	0.0288 (16)	0.0273 (17)	0.0148 (15)	0.0069 (14)	0.0003 (12)	0.0050 (13)
02	0.049 (2)	0.0251 (18)	0.0161 (15)	0.0136 (16)	0.0021 (14)	-0.0019 (13)

supplementary materials

O3	0.0253 (16)	0.0362 (19)	0.0095 (15)	-0.0004 (14)	0.0045 (12)	-0.0036 (13)
O4	0.0259 (17)	0.0337 (19)	0.0214 (17)	0.0014 (15)	0.0050 (14)	0.0010 (14)
N1	0.028 (2)	0.0120 (16)	0.0175 (18)	0.0069 (15)	-0.0020 (16)	0.0005 (14)
N2	0.027 (2)	0.0149 (17)	0.027 (2)	0.0079 (16)	0.0011 (19)	0.0071 (16)
N3	0.054 (3)	0.024 (2)	0.055 (3)	0.004 (2)	-0.029 (3)	0.003 (2)
N4	0.0178 (17)	0.028 (2)	0.0146 (17)	0.0054 (15)	0.0059 (14)	0.0020 (15)
C1	0.0146 (19)	0.024 (2)	0.022 (2)	0.0038 (17)	0.0020 (17)	0.0015 (18)
C2	0.0159 (19)	0.020 (2)	0.018 (2)	0.0079 (16)	0.0050 (16)	0.0061 (16)
C3	0.0133 (18)	0.020 (2)	0.017 (2)	0.0061 (16)	0.0044 (16)	0.0029 (16)
C4	0.030 (2)	0.017 (2)	0.020 (2)	0.0099 (18)	0.0079 (18)	0.0047 (17)
C5	0.025 (2)	0.028 (2)	0.017 (2)	0.0057 (19)	0.0076 (18)	0.0046 (18)
C6	0.017 (2)	0.027 (2)	0.016 (2)	0.0120 (18)	0.0034 (16)	0.0047 (18)

Geometric parameters (Å, °)

CdI—N1	2.259 (3)	O4—H4B	0.8300
Cd1—N1 ⁱ	2.259 (3)	O4—H4C	0.9000
Cd1—O1	2.289 (3)	N1—N2	1.201 (5)
Cd1—O1 ⁱ	2.289 (3)	N1—Cd2 ^{vii}	2.284 (3)
Cd1—O3 ⁱⁱ	2.370 (3)	N2—N3	1.137 (6)
Cd1—O3 ⁱⁱⁱ	2.370 (3)	N4—C1	1.347 (6)
Cd2—O2	2.242 (3)	N4—C5	1.349 (6)
Cd2—O2 ^{iv}	2.242 (3)	C1—C2	1.369 (6)
Cd2—N1 ^v	2.284 (3)	C1—H1A	0.9400
Cd2—N1 ⁱ	2.284 (3)	C2—C3	1.397 (6)
Cd2—O4 ^{iv}	2.363 (3)	C2—H2A	0.9400
Cd2—O4	2.363 (3)	C3—C4	1.401 (6)
O1—C6	1.252 (5)	C3—C6	1.507 (6)
O2—C6	1.257 (5)	C4—C5	1.365 (6)
O3—N4	1.332 (5)	C4—H4A	0.9400
O3—Cd1 ^{vi}	2.370 (3)	С5—Н5А	0.9400
N1—Cd1—N1 ⁱ	180.000(1)	C6—O2—Cd2	130.6 (3)
N1—Cd1—N1 ⁱ N1—Cd1—O1	180.000 (1) 85.90 (12)	C6—O2—Cd2 N4—O3—Cd1 ^{vi}	130.6 (3) 118.5 (2)
N1—Cd1—N1 ⁱ N1—Cd1—O1 N1 ⁱ —Cd1—O1	180.000 (1) 85.90 (12) 94.10 (12)	C6—O2—Cd2 N4—O3—Cd1 ^{vi} Cd2—O4—H4B	130.6 (3) 118.5 (2) 109.5
$N1-Cd1-N1^{i}$ N1-Cd1-O1 $N1^{i}-Cd1-O1$ $N1-Cd1-O1^{i}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12)	C6—O2—Cd2 N4—O3—Cd1 ^{vi} Cd2—O4—H4B Cd2—O4—H4C	130.6 (3) 118.5 (2) 109.5 120.1
$N1 - Cd1 - N1^{i}$ $N1 - Cd1 - O1$ $N1^{i} - Cd1 - O1$ $N1 - Cd1 - O1^{i}$ $N1^{i} - Cd1 - O1^{i}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12)	C6—O2—Cd2 N4—O3—Cd1 ^{vi} Cd2—O4—H4B Cd2—O4—H4C H4B—O4—H4C	130.6 (3) 118.5 (2) 109.5 120.1 130.4
$N1-Cd1-N1^{i}$ $N1-Cd1-O1$ $N1^{i}-Cd1-O1^{i}$ $N1^{i}-Cd1-O1^{i}$ $O1-Cd1-O1^{i}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0	C6—O2—Cd2 N4—O3—Cd1 ^{vi} Cd2—O4—H4B Cd2—O4—H4C H4B—O4—H4C N2—N1—Cd1	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3)
$N1-Cd1-N1^{i}$ $N1-Cd1-O1$ $N1^{i}-Cd1-O1$ $N1-Cd1-O1^{i}$ $N1^{i}-Cd1-O1^{i}$ $O1-Cd1-O1^{i}$ $N1-Cd1-O1^{i}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0 90.18 (12)	C6—O2—Cd2 N4—O3—Cd1 ^{vi} Cd2—O4—H4B Cd2—O4—H4C H4B—O4—H4C N2—N1—Cd1 N2—N1—Cd2 ^{vii}	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3) 117.2 (3)
$\begin{array}{c} N1 - Cd1 - N1^{i} \\ N1 - Cd1 - O1 \\ N1^{i} - Cd1 - O1 \\ N1 - Cd1 - O1^{i} \\ N1^{i} - Cd1 - O1^{i} \\ O1 - Cd1 - O1^{i} \\ N1 - Cd1 - O3^{ii} \\ N1^{i} - Cd1 - O3^{ii} \end{array}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0 90.18 (12) 89.82 (12)	C6—O2—Cd2 N4—O3—Cd1 ^{vi} Cd2—O4—H4B Cd2—O4—H4C H4B—O4—H4C N2—N1—Cd1 N2—N1—Cd2 ^{vii} Cd1—N1—Cd2 ^{vii}	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3) 117.2 (3) 119.53 (15)
$N1-Cd1-N1^{i}$ $N1-Cd1-O1$ $N1^{i}-Cd1-O1$ $N1-Cd1-O1^{i}$ $N1^{i}-Cd1-O1^{i}$ $O1-Cd1-O1^{i}$ $N1-Cd1-O3^{ii}$ $N1^{i}-Cd1-O3^{ii}$ $O1-Cd1-O3^{ii}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0 90.18 (12) 89.82 (12) 89.01 (11)	C6O2Cd2 N4O3Cd1 ^{vi} Cd2O4H4B Cd2O4H4C H4BO4H4C N2N1Cd1 N2N1Cd2 ^{vii} Cd1N1Cd2 ^{vii} N3N2N1	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3) 117.2 (3) 119.53 (15) 178.2 (5)
$\begin{array}{c} N1 - Cd1 - N1^{i} \\ N1 - Cd1 - O1 \\ N1^{i} - Cd1 - O1 \\ N1 - Cd1 - O1^{i} \\ N1^{i} - Cd1 - O1^{i} \\ O1 - Cd1 - O1^{i} \\ N1 - Cd1 - O3^{ii} \\ N1^{i} - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1^{i} - Cd1 - O3^{ii} \\ O1^{i}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0 90.18 (12) 89.82 (12) 89.82 (12) 89.01 (11) 90.99 (11)	C6O2Cd2 N4O3Cd1 ^{vi} Cd2O4H4B Cd2O4H4C H4BO4H4C N2N1Cd1 N2N1Cd2 ^{vii} Cd1N1Cd2 ^{vii} N3N2N1 O3N4C1	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3) 117.2 (3) 119.53 (15) 178.2 (5) 120.0 (4)
$\begin{array}{c} N1 - Cd1 - N1^{i} \\ N1 - Cd1 - O1 \\ N1^{i} - Cd1 - O1 \\ N1 - Cd1 - O1^{i} \\ N1^{i} - Cd1 - O1^{i} \\ O1 - Cd1 - O1^{i} \\ N1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1^{i} - Cd1 - O3^{ii} \\ N1 - Cd1 - O3^{iii} \\ \end{array}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0 90.18 (12) 89.82 (12) 89.01 (11) 90.99 (11) 89.82 (12)	C6O2Cd2 N4O3Cd1 ^{vi} Cd2O4H4B Cd2O4H4C H4BO4H4C N2N1Cd1 N2N1Cd2 ^{vii} Cd1N1Cd2 ^{vii} N3N2N1 O3N4C1 O3N4C5	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3) 117.2 (3) 119.53 (15) 178.2 (5) 120.0 (4) 118.9 (4)
$\begin{array}{c} N1 - Cd1 - N1^{i} \\ N1 - Cd1 - O1 \\ N1^{i} - Cd1 - O1 \\ N1 - Cd1 - O1^{i} \\ N1^{i} - Cd1 - O1^{i} \\ O1 - Cd1 - O1^{i} \\ N1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ O1 - Cd1 - O3^{ii} \\ N1^{i} - Cd1 - O3^{ii} \\ N1 - Cd1 - O3^{iii} \\ \end{array}$	180.000 (1) 85.90 (12) 94.10 (12) 94.10 (12) 85.90 (12) 180.0 90.18 (12) 89.82 (12) 89.01 (11) 90.99 (11) 89.82 (12) 90.18 (12)	C6O2Cd2 N4O3Cd1 ^{vi} Cd2O4H4B Cd2O4H4C H4BO4H4C N2N1Cd1 N2N1Cd2 ^{vii} Cd1N1Cd2 ^{vii} N3N2N1 O3N4C5 C1N4C5	130.6 (3) 118.5 (2) 109.5 120.1 130.4 122.0 (3) 117.2 (3) 119.53 (15) 178.2 (5) 120.0 (4) 118.9 (4) 121.2 (4)

O1 ⁱ —Cd1—O3 ⁱⁱⁱ	89.01 (11)	N4—C1—H1A	119.5		
O3 ⁱⁱ —Cd1—O3 ⁱⁱⁱ	180.0	C2C1H1A	119.5		
O2—Cd2—O2 ^{iv}	180.0	C1—C2—C3	119.4 (4)		
O2—Cd2—N1 ^v	85.06 (12)	C1—C2—H2A	120.3		
$O2^{iv}$ —Cd2—N1 ^v	94.94 (12)	C3—C2—H2A	120.3		
O2—Cd2—N1 ⁱ	94.94 (12)	C2—C3—C4	118.0 (4)		
O2 ^{iv} —Cd2—N1 ⁱ	85.06 (12)	C2—C3—C6	120.9 (4)		
$N1^{v}$ —Cd2— $N1^{i}$	180.000 (1)	C4—C3—C6	121.1 (4)		
O2—Cd2—O4 ^{iv}	87.87 (12)	C5—C4—C3	120.4 (4)		
$O2^{iv}$ —Cd2—O4 ^{iv}	92.13 (12)	C5—C4—H4A	119.8		
$N1^{v}$ —Cd2—O4 ^{iv}	94.08 (12)	C3—C4—H4A	119.8		
$N1^{i}$ —Cd2—O4 ^{iv}	85.92 (12)	N4—C5—C4	119.9 (4)		
O2—Cd2—O4	92.13 (12)	N4—C5—H5A	120.0		
O2 ^{iv} —Cd2—O4	87.87 (12)	C4—C5—H5A	120.0		
N1 ^v —Cd2—O4	85.92 (12)	01	127.4 (4)		
N1 ⁱ —Cd2—O4	94.08 (12)	O1—C6—C3	117.1 (4)		
O4 ^{iv} —Cd2—O4	180.0	O2—C6—C3	115.5 (4)		
C6—O1—Cd1	132.5 (3)				
N1—Cd1—O1—C6	141.5 (4)	O3—N4—C1—C2	-177.8 (4)		
N1 ⁱ —Cd1—O1—C6	-38.5 (4)	C5—N4—C1—C2	2.5 (6)		
O3 ⁱⁱ —Cd1—O1—C6	51.2 (4)	N4—C1—C2—C3	0.8 (6)		
O3 ⁱⁱⁱ —Cd1—O1—C6	-128.8 (4)	C1—C2—C3—C4	-3.5 (6)		
N1 ^v —Cd2—O2—C6	136.6 (4)	C1—C2—C3—C6	174.4 (4)		
N1 ⁱ —Cd2—O2—C6	-43.4 (4)	C2—C3—C4—C5	2.9 (6)		
O4 ^{iv} —Cd2—O2—C6	-129.1 (4)	C6—C3—C4—C5	-174.9 (4)		
O4—Cd2—O2—C6	50.9 (4)	O3—N4—C5—C4	177.2 (4)		
01—Cd1—N1—N2	17.4 (4)	C1—N4—C5—C4	-3.1 (6)		
O1 ⁱ —Cd1—N1—N2	-162.6 (4)	C3—C4—C5—N4	0.3 (7)		
O3 ⁱⁱ —Cd1—N1—N2	106.4 (4)	Cd1—O1—C6—O2	38.1 (7)		
O3 ⁱⁱⁱ —Cd1—N1—N2	-73.6 (4)	Cd1—O1—C6—C3	-140.8 (3)		
O1—Cd1—N1—Cd2 ^{vii}	-176.10 (19)	Cd2—O2—C6—O1	15.1 (7)		
O1 ⁱ —Cd1—N1—Cd2 ^{vii}	3.90 (19)	Cd2—O2—C6—C3	-166.0 (3)		
O3 ⁱⁱ —Cd1—N1—Cd2 ^{vii}	-87.11 (18)	C2—C3—C6—O1	9.4 (6)		
O3 ⁱⁱⁱ —Cd1—N1—Cd2 ^{vii}	92.89 (18)	C4—C3—C6—O1	-172.8 (4)		
Cd1 ^{vi} —O3—N4—C1	103.7 (4)	C2—C3—C6—O2	-169.6 (4)		
Cd1 ^{vi} —O3—N4—C5	-76.7 (4)	C4—C3—C6—O2	8.1 (6)		
Symmetry codes: (i) - <i>x</i> , - <i>y</i> +1, - <i>z</i> +1; (ii) - <i>x</i> , - <i>y</i> +1, - <i>z</i> +2; (iii) <i>x</i> , <i>y</i> , <i>z</i> -1; (iv) - <i>x</i> , - <i>y</i> , - <i>z</i> +1; (v) <i>x</i> , <i>y</i> -1, <i>z</i> ; (vi) <i>x</i> , <i>y</i> , <i>z</i> +1; (vii) <i>x</i> , <i>y</i> +1, <i>z</i> .					

Hydrogen-bond geometry (Å, $^{\circ}$)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O4—H4C···N3 ^{viii}	0.90	2.36	3.239 (7)	167

supplementary materials

O4—H4B···O3^{ix} 0.83 2.05 2.716 (4) 137 Symmetry codes: (viii) -x+1, -y+1, -z+1; (ix) -x+1, -y+1, -z+2.

Fig. 1

Fig. 2